
1

Chapter 6

Database Recovery Techniques

Adapted from the slides of “Fundamentals of Database Systems”

(Elmasri et al., 2006)

2

Outline

 Purpose of Database Recovery

 Recovery Concepts

 Recovery Based on Deferred Update

 Recovery Based on Immediate Update

 Shadow paging

 ARIES Recovery Algorithm

 Recovery in Multidatabase System

 To bring the database into the last consistent state,
which existed prior to the failure.

 To preserve transaction properties (Atomicity,
Consistency, Isolation and Durability).

 Example:

 If the system crashes before a fund transfer
transaction completes its execution, then either one or
both accounts may have incorrect value.

 Thus, the database must be restored to the state
before the transaction modified any of the accounts.

1. Purpose of Database Recovery

2. Recovery Concepts (1)

Types of Failure

 The database may become unavailable for use

due to

 Transaction failure: Transactions may fail because

of incorrect input, deadlock, incorrect synchronization.

 System failure: System may fail because of

addressing error, application error, operating system

fault, RAM failure, etc.

 Media failure: Disk head crash, power disruption, etc.

T ID Back P Next P Operation Data item BFIM AFIM

T1 0 1

T1 1 4

T2 0 8

T1 2 5

T1 4 7

T3 0 9

T1 5 nil

Begin

Write

W

R

R

End

Begin
X

Y

M

N

X = 200

Y = 100

M = 200

N = 400

X = 100

Y = 50

M = 200

N = 400

Recovery Concepts (2)

Transaction Log
 For recovery from any type of failure data values prior to

modification (BFIM - BeFore Image) and the new value after
modification (AFIM – AFter Image) are required.

 These values and other information is stored in a sequential
file called Transaction log. A sample log is given below. Back
P and Next P point to the previous and next log records of the
same transaction.

Recovery Concepts (3)

Data Caching

 Data items to be modified are first stored into

database cache by the Cache Manager (CM)

and after modification they are flushed (written)

to the disk.

 The flushing is controlled by Modified and Pin-

Unpin bits.

 Pin-Unpin: Instructs the operating system not to flush

the data item.

 Modified: Indicates the AFIM of the data item.

Recovery Concepts (4)

Data Update:

 Immediate Update: As soon as a data item is modified in

cache, the disk copy is updated.

 Deferred Update: All modified data items in the cache is

written either after a transaction ends its execution or after a

fixed number of transactions have completed their execution.

 Shadow update: The modified version of a data item does

not overwrite its disk copy but is written at a separate disk

location.

 In-place update: The disk version of the data item is

overwritten by the cache version.

Recovery Concepts (5)

Transaction Roll-back (Undo) and Roll-Forward

(Redo)

 To maintain atomicity, a transaction’s operations are

redone or undone.

 Undo: Restore all BFIMs on to disk (Remove all AFIMs).

 Redo: Restore all AFIMs on to disk.

 Database recovery is achieved either by performing only

Undo or only Redo or by a combination of the two.

These operations are recorded in the log as they

happen.

Recovery Concepts (6)

Write-Ahead Logging

 When in-place update (immediate or deferred) is used

then log is necessary for recovery and it must be

available to recovery manager. This is achieved by

Write-Ahead Logging (WAL) protocol. WAL states that:

 For Undo: Before a data item’s AFIM is flushed to the

database disk (overwriting the BFIM) its BFIM must be

written to the log and the log must be saved on a stable

store (log disk).

 For Redo: Before a transaction executes its commit

operation, all its AFIMs must be written to the log and the

log must be saved on a stable store.

Steal/No-Steal and Force/No-Force

 Possible ways for flushing database cache to
database disk:

 Steal/No-Steal:

1. Steal: Cache can be flushed before transaction
commits.

2. No-Steal: Cache cannot be flushed before
transaction commit.

 Force/No-Force:

1. Force: Cache is immediately flushed (forced) to
disk before the transaction commit.

2. No-Force: Otherwise.

Recovery Concepts (7)

Recovery Concepts (8)

Steal/No-Steal and Force/No-Force

 These give rise to four different ways for
handling recovery:
 Steal/No-Force (Undo/Redo)

 Steal/Force (Undo/No-redo)

 No-Steal/No-Force (Redo/No-undo)

 No-Steal/Force (No-undo/No-redo)

11

Recovery Concepts (9)

Checkpointing

 Time to time (randomly or under some criteria) the

database flushes its buffer to database disk to

minimize the task of recovery. The following steps

defines a checkpoint operation:

1. Suspend execution of transactions temporarily.

2. Force write modified buffer data to disk.

3. Write a [checkpoint] record to the log, save the log to disk.

4. Resume normal transaction execution.

 During recovery redo or undo is required to

transactions appearing after [checkpoint] record.

Recovery Concepts (10)

Fuzzy Checkpointing

 The time need to force-write all modified memory

buffers may delay transaction processing

 Fuzzy checkpointing.

 System can resume transaction processing after a

[begin_checkpoint] record is written to the log without

having to wait for step 2 to finish.

 When step 2 is completed [end_checkpoint] record is

written to the log.

 Until step 2 is commpleted, the previous checkpoint

record should maintain valid.

 Deferred Update (No Undo/Redo)

 The data update goes as follows:

 A set of transactions records their updates in the
log.

 At commit point under WAL scheme these
updates are saved on database disk.

 After reboot from a failure the log is used to redo
all the transactions affected by this failure. No
undo is required because no AFIM is flushed to
the disk before a transaction commits.

3. Recovery Based on Deferred

Update (1)

Recovery Based on Deferred Update (2)

 Deferred Update in a single-user system

There is no concurrent data sharing in a single user

system. The data update goes as follows:

 A set of transactions records their updates in the log.

 At commit point under WAL scheme these updates are

saved on database disk.

 After reboot from a failure the log is used to redo all the

transactions affected by this failure. No undo is required

because no AFIM is flushed to the disk before a

transaction commits.

T1 T2

read_item (A) read_item (B)

read_item (D) write_item (B)

write_item (D) read_item (D)

write_item (D)

--- log ---

[start_transaction, T1]

[write_item, T1, D, 20]

[commit T1]

[start_transaction, T2]

[write_item, T2, B, 10]

[write_item, T2, D, 25] system crash

Redo [write_item, T1, D, 20] of T1

Ignore T2

Recovery Based on Deferred Update (3)

 Deferred Update with concurrent users
 This environment requires some concurrency control mechanism

to guarantee isolation property of transactions. In a system
recovery transactions which were recorded in the log after the
last checkpoint were redone. The recovery manager may scan
some of the transactions recorded before the checkpoint to get
the AFIMs.

Deferred Update with concurrent users

 Two tables are required for implementing this protocol:
 Active table: All active transactions are entered in this

table.

 Commit table: Transactions to be committed are entered
in this table.

 During recovery, all transactions of the commit table are
redone and all transactions of active tables are ignored
since none of their AFIMs reached the database. It is
possible that a commit table transaction may be redone
twice but this does not create any inconsistency because
of a redone is “idempotent”, that is, one redone for an
AFIM is equivalent to multiple redone for the same AFIM.

Recovery Based on Deferred Update (4)

--- log ---

[start_transaction, T1]

[write_item, T1, D, 20]

[checkpoint]

[start_transaction, T4]

[write_item, T4, B, 15]

[start_transaction T2]

[commit, T1]

[write_item, T4, A, 20]

[commit, T4]

[write_item, T2, B, 12]

[start_transaction, T3]

[write_item, T3, A, 30]

[write_item, T2, D, 25] system crash

• Ignore: T2 & T3

• Redo: T1 & T4

D 20

B 15

A 20

4. Recovery Based on Immediate

Update (1)
 Undo/No-redo Algorithm

 In this algorithm AFIMs of a transaction are
flushed to the database disk under WAL before it
commits.

 For this reason the recovery manager undoes all
transactions during recovery.

 No transaction is redone.

 It is possible that a transaction might have
completed execution and ready to commit but this
transaction is also undone.

Recovery Based on Immediate

Update (2)
 Undo/Redo Algorithm (Single-user

environment)
 Recovery schemes of this category apply undo and

also redo for recovery.

 In a single-user environment no concurrency control is
required but a log is maintained under WAL.

 Note that at any time there will be one transaction in
the system and it will be either in the commit table or
in the active table.

 The recovery manager performs:
 Undo of a transaction if it is in the active table.

 Redo of a transaction if it is in the commit table.

Recovery Based on Immediate

Update (3)
 Undo/Redo Algorithm (Concurrent execution)

 Recovery schemes of this category applies undo and
also redo to recover the database from failure.

 In concurrent execution environment a concurrency
control is required and log is maintained under WAL.

 Commit table records transactions to be committed and
active table records active transactions. To minimize the
work of the recovery manager checkpointing is used.

 The recovery performs:

 Undo of a transaction if it is in the active table.

 Redo of a transaction if it is in the commit table.

--- log ---

[start_transaction, T1]

[write_item, T1, D, 12, 20]

[checkpoint]

[start_transaction, T4]

[write_item, T4, B, 23, 15]

[start_transaction T2]

[commit, T1]

[write_item, T2, B, 15, 12]

[start_transaction, T3]

[write_item, T4, A, 30, 20]

[commit, T4]

[write_item, T3, A, 20, 30]

[write_item, T2, D, 20, 25]

[write_item, T2, B, 12, 17]

 system crash

Undo: T2 & T3

D 20

B 15

A 20

B 12

D 20

A 20

B 15

Redo: T1 & T4

 The AFIM does not overwrite its BFIM but recorded at

another place on the disk. Thus, at any time a data item

has AFIM and BFIM (Shadow copy of the data item) at

two different places on the disk.

X Y

Database

X' Y'

X and Y: Shadow copies of data items

X' and Y': Current copies of data items

5. Shadow paging (1)

 To manage access of data items by concurrent transactions

two directories (current and shadow) are used.

 The directory arrangement is illustrated below. Here a page

is a data item.

Shadow paging (2)

Shadow paging (3)

 Recovery:

 Free the modified database pages and to discard

the current directory (reinstating the shadow

directory)

 Committing a transaction corresponding to

discarding the previous shadow directory.

 NO-UNDO/ NO-REDO

 In a multiuser environment use logs and

checkpoints

27

6. ARIES Recovery Algorithm (1)

 Steal/no-force (UNDO/REDO)

 The ARIES Recovery Algorithm is based on:

 WAL (Write Ahead Logging)

 Repeating history during redo:
 ARIES will retrace all actions of the database system

prior to the crash to reconstruct the database state when
the crash occurred.

 Logging changes during undo:
 It will prevent ARIES from repeating the completed undo

operations if a failure occurs during recovery, which
causes a restart of the recovery process.

ARIES Recovery Algorithm (2)

 The ARIES recovery algorithm consists of three

steps:

1. Analysis: step identifies the dirty (updated) pages

in the buffer and the set of transactions active at

the time of crash. The appropriate point in the log

where redo is to start is also determined.

2. Redo: necessary redo operations are applied.

3. Undo: log is scanned backwards and the operations

of transactions active at the time of crash are

undone in reverse order.

ARIES Recovery Algorithm (3)

 The Log and Log Sequence Number (LSN)

 A log record is written for:

 (a) data update

 (b) transaction commit

 (c) transaction abort

 (d) undo

 In the case of undo a compensating log record is written.

 (e) transaction end

ARIES Recovery Algorithm (4)

 The Log and Log Sequence Number (LSN) (cont.)

 A unique LSN is associated with every log record.

 LSN increases monotonically and indicates the disk address

of the log record it is associated with.

 In addition, each data page stores the LSN of the latest log

record corresponding to a change for that page.

 A log record stores

 (a) the previous LSN of that transaction. It links the log record

of each transaction. It is like a back pointer points to the

previous record of the same transaction

 (b) the transaction ID

 (c) the type of log record.

ARIES Recovery Algorithm (5)

 The Log and Log Sequence Number (LSN) (cont.)

 For a write operation the following additional
information is logged:

1. Page ID for the page that includes the item

2. Length of the updated item

3. Its offset from the beginning of the page

4. BFIM of the item

5. AFIM of the item

 The Transaction table and the Dirty Page
table

 For efficient recovery following tables are also
stored in the log during checkpointing:
 Transaction table: Contains an entry for each active

transaction, with information such as transaction ID,
transaction status and the LSN of the most recent log
record for the transaction.

 Dirty Page table: Contains an entry for each dirty page
in the buffer, which includes the page ID and the LSN
corresponding to the earliest update to that page.

ARIES Recovery Algorithm (6)

ARIES Recovery Algorithm (7)

 Checkpointing

 A checkpointing does the following:

 Writes a begin_checkpoint record in the log

 Writes an end_checkpoint record in the log. With this record
the contents of transaction table and dirty page table are
appended to the end of the log.

 Writes the LSN of the begin_checkpoint record to a special
file. This special file is accessed during recovery to locate the
last checkpoint information.

 To reduce the cost of checkpointing and allow the system
to continue to execute transactions, ARIES uses “fuzzy
checkpointing”.

ARIES Recovery Algorithm (8)
 The following steps are performed for recovery:

 Analysis phase:

 Start at the begin_checkpoint record and proceed to the
end_checkpoint record.

 Access transaction table and dirty page table are
appended to the end of the log.

 Modify transaction table and dirty page table:

 An end log record was encountered for T delete entry T
from transaction table

 Some other type of log record is encountered for T’
insert an entry T’ into transaction table if not already
present, or the last LSN is modified.

 The log record corresponds to a change for page P
insert an entry P (if not present) with the associated LSN in
dirty page table

 The analysis phase compiles the set of redo and undo to
be performed and ends.

ARIES Recovery Algorithm (9)
 The following steps are performed for recovery:

 Redo phase: Starts redoing at a point in the log where it knows
that previous changes to dirty pages have already been applied
to disk.

 Where?

 Finding the smallest LSN, M of all the dirty pages in the Dirty
Page Table.

 Redo starts at the log record with LSN = M and scan forward to
the end of the log.

 Verify whether or not the change has to be reapplied.

 A change recorded in the log pertains to the page P that is not in
the Dirty Page Table no redo

 A change recorded in the log (LSN = N) pertain to Page P and
the Dirty Page Table contains an entry for P with LSN > N no
redo.

 Page P is read from disk and the LSN stored on that page > N
no redo.

ARIES Recovery Algorithm (10)

 The following steps are performed for recovery:
 Undo phase: Starts from the end of the log and proceeds

backward while performing appropriate undo. For each undo it
writes a compensating record in the log.

 A multidatabase system is a special distributed database
system where one node may be running relational database
system under UNIX, another may be running object-oriented
system under Windows and so on.

 A transaction may run in a distributed fashion at multiple
nodes.

 In this execution scenario the transaction commits only when
all these multiple nodes agree to commit individually the part
of the transaction they were executing.

 This commit scheme is referred to as “two-phase commit”
(2PC).

 If any one of these nodes fails or cannot commit the part of
the transaction, then the transaction is aborted.

 Each node recovers the transaction under its own recovery
protocol.

7. Recovery in multidatabase system

